metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Djulia Onggo,^a Fatimah Martak,^a Ismunandar,^a Bohari M. Yamin^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia, ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor Darul Ehsan, Malaysia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.008 \text{ Å}$ Disorder in solvent or counterion R factor = 0.065 wR factor = 0.154 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hemi{tris(picolinic acid- $\kappa^2 N$,O)iron(II)/tris(picolinato- $\kappa^2 N$,O)iron(II)} hemi(tetrafluoroborate)

Received 4 April 2006

Accepted 18 April 2006

The crystal structure of the title compound, $[Fe(C_6H_4NO_2)-(C_6H_{4.5}NO_2)(C_6H_5NO_2)](BF_4)_{0.5}$, is regarded as consisting of disordered mononuclear $[Fe^{II}(C_6H_{4.5}NO_2)_3]^{0.5+}$ cations and tetrafluoroborate anions. The *N*,*O*-chelated Fe lies on a special position of site symmetry 3 and the acid H atom on a special position of site symmetry $\overline{1}$. The B atom is located on a special position of site symmetry $\overline{3}$. The disordered mononuclear units are linked through the acid H atom into a layer motif.

Comment

The picolinate ion chelates to a large number of metal atoms, as shown by a search through the Cambridge Structural Database (Version 5.27; Allen, 2002). Among the complexes are iron(II) derivatives; the iron derivative exists in two forms, as an octahedral diaqua dihydrate (Shova et al., 1996) and as a square-planar dihydrate (Kiani et al., 2000). Yet another iron(II) derivative is known. This light-green compound has a $[(C_6H_4NO_2)_3Fe^{II}]$ ·H₂O formulation (Shova *et al.*, 1996); however, the location of the missing hydrogen that would ensure electroneutrality cannot be ascertained. In the title compound, (I), the half negative charge of the anion is balanced by a disordered hemication. The mononuclear unit lies on a special position of site symmetry 3. The metal center lies in an octahedron as it is N,O-chelated by three pairs of atoms (Fig. 1). Hydrogen bonds link the metal-bearing groups into a layer motif, and the anions occupy the spaces between the layers.

Experimental

Iron(II) tetrafluoroborate hexahydrate (0.07 g, 0.2 mmol) was dissolved in methanol (10 ml). To the solution was added 2,2'-pyridil (0.02 g, 0.1 mmol) dissolved in methanol (5 ml). The solvent was allowed to evaporate for more than a week to afford small orange crystals.

© 2006 International Union of Crystallography All rights reserved

Figure 1

Plot of the disordered cation, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, -z.] The anion is not shown.

Crystal data

 $[Fe(C_{6}H_{4}NO_{2})(C_{6}H_{4.5}NO_{2})-(C_{6}H_{5}NO_{2})](BF_{4})_{0.5}$ $M_{r} = 467.07$ Trigonal, $P\overline{3}$ a = 13.564 (2) Å c = 6.0108 (9) Å V = 957.7 (2) Å³

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.437, T_{\rm max} = 0.920$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.154$ S = 1.211128 reflections 97 parameters H-atom parameters constrained Z = 2 $D_x = 1.620 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.85 \text{ mm}^{-1}$ T = 295 (2) K Block, orange 0.17 × 0.15 × 0.10 mm

4988 measured reflections 1128 independent reflections 1055 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.062$ $\theta_{\text{max}} = 25.0^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0655P)^{2} + 1.2441P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.74 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1	
Selected geometric parameters (Å, $^{\circ}$).	

Fe1-O1	2.130 (3)	Fe1-N1	2.165 (3)
$\begin{array}{l} \text{D1-Fe1-O1}^{\text{iii}} \\ \text{D1-Fe1-O1}^{\text{iv}} \\ \text{D1-Fe1-N1} \end{array}$	91.9 (1) 91.9 (1) 76.0 (1)	01^{iv} -Fe1-N1 01-Fe1-N1 ^{iv} N1-Fe1-N1 ⁱⁱⁱ	94.3 (1) 166.5 (1) 98.8 (1)

Symmetry codes: (iii) -y + 1, x - y, z; (iv) -x + y + 1, -x + 1, z.

The BF₄⁻ ion was initially allowed to refine about the threefold axis, with the four B–F distances restrained to 1.37 (1) Å and the F···F distances to 2.24 (1) Å. Other restraints were imposed to prevent the atomic displacement parameters from becoming too large. A somewhat more satisfactory refinement was obtained by constraining the B and F atoms to special positions, and only the B atom was restrained to nearly isotropic behavior. The occupancy of the lone F atom is 0.1667. C-bound H atoms were positioned geometrically (C–H = 0.93 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The acid H atom is probably disordered over a special position of site symmetry $\overline{1}$; it was instead allowed to ride, with O–H = 0.82 Å $[U_{iso}(H) = 1.2U_{eq}(O)]$. The occupancy is 0.5.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

The authors thank Institut Teknologi Bandung, Universiti Kebangsaan Malaysia and the University of Malaya for supporting this work.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (1998). SHELXLTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kiani, S., Tapper, A., Staples, R. J. & Stavropoulos, P. (2000). J. Am. Chem. Soc. **122**, 7503–7517.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shova, S. G., Brashovyanu, N. V., Turte, K. I. & Mazus, M. D. (1996). Russ. J. Coord. Chem. 22, 438-444.