Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hemi\{tris(picolinic acid- $\kappa^{2} N, O$)iron(II)/tris(picolin-ato- $\kappa^{2} N, O$)iron(II)\} hemi(tetrafluoroborate)

Djulia Onggo, ${ }^{\text {a }}$ Fatimah Martak, ${ }^{\text {a }}$ Ismunandar, ${ }^{\text {a }}$ Bohari M. Yamin ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia, ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor Darul Ehsan, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in solvent or counterion
R factor $=0.065$
$w R$ factor $=0.154$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The crystal structure of the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{4.5} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right)\right]\left(\mathrm{BF}_{4}\right)_{0.5}$, is regarded as consisting of disordered mononuclear $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{C}_{6} \mathrm{H}_{4.5} \mathrm{NO}_{2}\right)_{3}\right]^{0.5+}$ cations and tetrafluoroborate anions. The N, O-chelated Fe lies on a special position of site symmetry 3 and the acid H atom on a special position of site symmetry $\overline{1}$. The B atom is located on a special position of site symmetry $\overline{3}$. The disordered mononuclear units are linked through the acid H atom into a layer motif.

Comment

The picolinate ion chelates to a large number of metal atoms, as shown by a search through the Cambridge Structural Database (Version 5.27; Allen, 2002). Among the complexes are iron(II) derivatives; the iron derivative exists in two forms, as an octahedral diaqua dihydrate (Shova et al., 1996) and as a square-planar dihydrate (Kiani et al., 2000). Yet another iron(II) derivative is known. This light-green compound has a $\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{3} \mathrm{Fe}^{\mathrm{II}}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ formulation (Shova et al., 1996); however, the location of the missing hydrogen that would ensure electroneutrality cannot be ascertained. In the title compound, (I), the half negative charge of the anion is balanced by a disordered hemication. The mononuclear unit lies on a special position of site symmetry 3 . The metal center lies in an octahedron as it is N, O-chelated by three pairs of atoms (Fig. 1). Hydrogen bonds link the metal-bearing groups into a layer motif, and the anions occupy the spaces between the layers.

Experimental

Iron(II) tetrafluoroborate hexahydrate $(0.07 \mathrm{~g}, 0.2 \mathrm{mmol})$ was dissolved in methanol (10 ml). To the solution was added $2,2^{\prime}$-pyridil $(0.02 \mathrm{~g}, 0.1 \mathrm{mmol})$ dissolved in methanol $(5 \mathrm{ml})$. The solvent was allowed to evaporate for more than a week to afford small orange crystals.

Received 4 April 2006
Accepted 18 April 2006

Figure 1
Plot of the disordered cation, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y,-z$.] The anion is not shown.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4.5} \mathrm{NO}_{2}\right)-\right.$
$\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}\right)\right]\left(\mathrm{BF}_{4}\right)_{0.5}$
$M_{r}=467.07$
Trigonal, $P \overline{3}$
$a=13.564(2) \AA$
$c=6.0108(9) \AA$
$V=957.7(2) \AA^{3}$

Data collection

Bruker APEX area-detector	4988 measured reflections
\quad diffractometer	1128 independent reflections
φ and ω scans	1055 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.062$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$\theta_{\max }=25.0^{\circ}$
$T_{\min }=0.437, T_{\max }=0.920$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.154$
$S=1.21$
1128 reflections
97 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.620 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.85 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, orange } \\
& 0.17 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

4988 measured reflections
1128 independent reflections 1055 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta^{\circ}=25.0^{\circ}$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0655 P)^{2}\right. \\
\quad+1.2441 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.31 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{O} 1$	$2.130(3)$	$\mathrm{Fe} 1-\mathrm{N} 1$	$2.165(3)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {iii }}$	$91.9(1)$	$\mathrm{O}^{\text {iv }}-\mathrm{Fe} 1-\mathrm{N} 1$	$94.3(1)$
$\mathrm{O}^{1}-\mathrm{Fe} 1-1^{\mathrm{iv}}$	$91.9(1)$	$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 1^{\mathrm{i}}$	$166.5(1)$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{N} 1$	$76.0(1)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{N} 1^{i i}$	$98.8(1)$

Symmetry codes: (iii) $-y+1, x-y, z$; (iv) $-x+y+1,-x+1, z$.

The $\mathrm{BF}_{4}{ }^{-}$ion was initially allowed to refine about the threefold axis, with the four $\mathrm{B}-\mathrm{F}$ distances restrained to 1.37 (1) \AA and the F..F distances to 2.24 (1) \AA. Other restraints were imposed to prevent the atomic displacement parameters from becoming too large. A somewhat more satisfactory refinement was obtained by constraining the B and F atoms to special positions, and only the B atom was restrained to nearly isotropic behavior. The occupancy of the lone F atom is 0.1667 . C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. The acid H atom is probably disordered over a special position of site symmetry $\overline{1}$; it was instead allowed to ride, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$. The occupancy is 0.5 .

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors thank Institut Teknologi Bandung, Universiti Kebangsaan Malaysia and the University of Malaya for supporting this work.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SHELXLTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Kiani, S., Tapper, A., Staples, R. J. \& Stavropoulos, P. (2000). J. Am. Chem. Soc. 122, 7503-7517.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shova, S. G., Brashovyanu, N. V., Turte, K. I. \& Mazus, M. D. (1996). Russ. J. Coord. Chem. 22, 438-444.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

